Área de Matemáticas
Línea 124: | Línea 124: | ||
==Unidad 2== | ==Unidad 2== | ||
+ | {| class="wikitable" style="width:95%; margin:1em auto 1em auto; border: 1.5px solid #ed028c;" | ||
+ | |style="background:#ed028c; color:#ffffff;"|'''Competencias''' | ||
+ | |style="background:#ed028c; color:#ffffff;"|'''Indicadores de logro''' | ||
+ | |style="background:#ed028c; color:#ffffff;"|'''Contenidos orientados a actividades de aprendizaje''' | ||
+ | |style="background:#ed028c; color:#ffffff;"|'''Criterios de evaluación''' | ||
+ | |style="background:#ed028c; color:#ffffff;"|'''Dosificación (Secuencia de aprendizajes)''' | ||
+ | |style="background:#ed028c; color:#ffffff;"|'''Cantidad de sesiones por aprendizaje''' | ||
+ | |-valign="top" | ||
+ | |rowspan="3" style="border: 0.5px solid #ed028c;"|7. Utiliza los conocimientos y las tecnologías propias de su cultura y las de otras culturas para resolver problemas de su entorno inmediato. | ||
+ | |rowspan="2" style="border: 0.5px solid #ed028c;"|7.1. Utiliza diferentes unidades de medida para establecer longitud (del sistema métrico e inglés). | ||
+ | |style="border: 0.5px solid #ed028c;"|7.1.1. Establecimiento de las equivalencias de unidades de longitud más utilizadas en el contexto. | ||
+ | |style="border: 0.5px solid #ed028c;"|1. Establece el valor de una medida en sistema internacional que fue dada en sistema inglés. | ||
+ | |style="border: 0.5px solid #ed028c;"|Medidas de longitud | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|7.1.2. Representación a escala de planos utilizando diferentes unidades de longitud. | ||
+ | |style="border: 0.5px solid #ed028c;"|2. Utiliza diferentes escalas para dibujar espacios de su contexto, utilizando diferentes unidades de longitud del sistema internacional. | ||
+ | |style="border: 0.5px solid #ed028c;"|Medidas de longitud | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|7.3. Utiliza diferentes unidades de medida para establecer volumen, capacidad y temperatura. | ||
+ | |style="border: 0.5px solid #ed028c;"|7.3.3. Ejercitación del cálculo de volumen de prismas rectangulares. | ||
+ | |style="border: 0.5px solid #ed028c;"|3. Utiliza diferentes unidades de medida para definir el volumen de prismas rectangulares. | ||
+ | |style="border: 0.5px solid #ed028c;"|Volúmenes | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|2 | ||
+ | |||
+ | |-valign="top" | ||
+ | |rowspan="15" style="border: 0.5px solid #ed028c;"|1. Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. | ||
+ | |rowspan="7" style="border: 0.5px solid #ed028c;"|1.1. Establece relación entre lados y ángulos de triángulos y cuadriláteros. | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.1. Identificación de ángulos opuestos por el vértice y de ángulos adyacentes. | ||
+ | |style="border: 0.5px solid #ed028c;"|1. Reconoce ángulos con respecto a un vértice. | ||
+ | |style="border: 0.5px solid #ed028c;"|Ángulos en los triángulos | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.2. Descripción de triángulo equilátero, isósceles y escaleno por sus ángulos. | ||
+ | |style="border: 0.5px solid #ed028c;"|2. Diferencia triángulos según la medida de sus lados. | ||
+ | |style="border: 0.5px solid #ed028c;"|Clasificación de triángulos | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.3. Establecimiento de la suma de ángulos en un triángulo. | ||
+ | |style="border: 0.5px solid #ed028c;"|3. Demuestra que la suma de ángulos de un triángulo es 180°. | ||
+ | |style="border: 0.5px solid #ed028c;"|Ángulos en los triángulos | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.4. Demostración del trazo de cuadriláteros: paralelogramos, trapecios. | ||
+ | |style="border: 0.5px solid #ed028c;"|4. Establece las diagonales en paralelogramos y trapecios. | ||
+ | |||
+ | 5. Explica el proceso para trazar paralelogramos y trapecios. | ||
+ | |style="border: 0.5px solid #ed028c;"|Paralelogramos | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.5. Establecimiento de relación entre diagonales de diferentes cuadriláteros. | ||
+ | |style="border: 0.5px solid #ed028c;"|6. Identifica la relación entre diagonales en diferentes cuadriláteros. | ||
+ | |style="border: 0.5px solid #ed028c;"|Cuadriláteros | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.7. Identificación y trazo de altura en diferentes cuadriláteros. | ||
+ | |style="border: 0.5px solid #ed028c;"|7. Define la altura en diferentes cuadriláteros. | ||
+ | |style="border: 0.5px solid #ed028c;"|Cuadriláteros | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"|1.1.8. Establecimiento de la suma de ángulos en un cuadrilátero. | ||
+ | |style="border: 0.5px solid #ed028c;"|8. Demuestra que la suma de ángulos de un cuadrilátero es 360°. | ||
+ | |style="border: 0.5px solid #ed028c;"|Ángulos en los cuadriláteros | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"|1 | ||
+ | |||
+ | |-valign="top" | ||
+ | |rowspan="3" style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |||
+ | |-valign="top" | ||
+ | |rowspan="5" style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |-valign="top" | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="border: 0.5px solid #ed028c;"| | ||
+ | |style="text-align:center; border: 0.5px solid #ed028c;"| | ||
+ | |} | ||
+ | |||
==Unidad 3== | ==Unidad 3== | ||
==Unidad 4== | ==Unidad 4== | ||
[[Categoría:Matemáticas]] | [[Categoría:Matemáticas]] |
Revisión del 19:03 5 jun 2022
Unidad 1[editar | editar código]
Competencias | Indicadores de logro | Contenidos orientados a actividades de aprendizaje | Criterios de evaluación | Dosificación (Secuencia de aprendizajes) | Cantidad de sesiones por aprendizaje |
7. Establece relaciones entre los conocimientos y tecnologías, propias de su cultura y las de otras culturas. | 7.4. Calcula el tiempo de duración de diferentes actividades que se realizan en la vida cotidiana utilizando la hora, minuto y segundo. | 7.4.1. Cálculo de tiempo de diferentes actividades que se realizan en la vida cotidiana. | 1. Define horas, minutos y segundos que transcurren entre un evento y otro.
2. Determina el tiempo necesario para que un evento suceda. |
El tiempo | 2 |
7.4.2. Elaboración de listas de eventos, sucesos o hechos que pueden durar determinado tiempo (horas, días, semanas, meses o años). | 3. Ubica eventos que se le indican en función del tiempo.
4. Establece una rutina calculando el tiempo que demora en las actividades propuestas. |
El tiempo y las actividades | 2 | ||
7.6. Utiliza las monedas en diferentes actividades. | 7.6.1. Elaboración de presupuestos de gastos personales, del hogar, aula y escuela. | 1. Describe gastos personales para establecer su presupuesto.
2. Demuestra la forma de elaborar el presupuesto familiar. |
Presupuesto | 2 | |
7.6.2. Establecimiento de equivalencia entre la moneda nacional y el dólar. | 3. Ejemplifica la equivalencia entre la moneda nacional y el dólar, en situaciones cotidianas. | Moneda nacional y extrajera | 2 | ||
7.7. Resuelve problemas que involucren el uso de la moneda nacional y operaciones de suma, resta multiplicación y división. | 7.7.1. Resolución de problemas que involucren el uso de la moneda nacional: suma, resta, multiplicación y división. | 1. Soluciona situaciones reales que involucren operaciones básicas y el uso de moneda nacional. | Problemas de moneda | 2 | |
1. Relaciona formas, figuras geométricas, símbolos, signos y señales con diferentes objetos y fenómenos que acontecen en el contexto natural, social y cultural de su comunidad. | 1.5. Calcula perímetro de triángulos y cuadriláteros. | 1.5.3. Ejercitación del cálculo de medidas de perímetro y área de figuras planas. | 1. Demuestra cómo calcular el perímetro de diferentes figuras planas: triángulos y cuadriláteros. | Figuras planas | 2 |
1.6. Clasifica sólidos geométricos. | 1.6.3. Clasificación de sólidos geométricos en prismas y pirámides. | 1. Diferencia prismas de pirámides, al describir sus características. | Figuras sólidas | 2 | |
6. Expresa en forma gráfica y descriptiva la información que obtiene relacionada con diversos elementos y acontecimientos de su contexto social, cultural y natural. | 6.4. Interpreta información presentada por medio de tablas y gráficas estadísticas. | 6.4.1. Interpretación de gráficas de barras y tablas estadísticas. | 1. Explica información presentada en tablas estadísticas y gráficas de barras. | Interpretación de gráficas | 4 |
4. Identifica elementos matemáticos que contribuyen al rescate, protección y conservación de su medio social, natural y cultural. | 4.5. Relaciona la multiplicación con la potenciación. | 4.5.3. Resolución de potencias menores o iguales a 100. | 1. Demuestra la relación entre la potenciación y la multiplicación hasta 100. | Potencias | 3 |
4.6. Efectúa divisiones con divisor de dos dígitos y dividendo de cuatro dígitos. | 4.6.1. Resolución de divisiones con divisor de dos dígitos y dividendo de cuatro dígitos. | 1. Resuelve divisiones con divisor de dos dígitos y dividendo de cuatro dígitos.
2. Explica el procedimiento para resolver divisiones. |
Divisiones | 3 | |
4.7. Resuelve problemas con operaciones de adición, sustracción, multiplicación o división. | 4.7.2. Resolución de cálculos aritméticos combinados de: suma, resta, multiplicación y división, respetando la jerarquía operacional. | 1. Resuelve operaciones aplicando la jerarquía de operaciones.
2. Explica su estrategia para resolver operaciones aplicando jerarquía de operaciones. |
Jerarquía de operaciones | 2 | |
4.9. Utiliza los decimales para representar cantidades y calcular sumas y restas. | 4.9.7. Solución de problemas aplicando sumas y restas de decimales con aproximación hasta décimos. | 1. Resuelve situaciones simuladas en las que se utilizan sumas y restas con decimales.
2. Realiza aproximaciones hasta décimos. |
Decimales | 4 | |
4.10. Efectúa sumas y restas de fracciones | 4.10.4. Solución de problemas aplicando suma y resta de fracciones. | 1. Resuelve situaciones simuladas en las que se utilizan sumas y restas con fracciones. | Fracciones | 4 | |
4.11. Utiliza las proporciones para resolver problemas. | 4.11.2. Utilización de proporciones para resolver problemas. | 1. Representa situaciones con proporciones.
2. Resuelve situaciones utilizando proporciones. |
Proporciones | 4 | |
5. Organiza en forma lógica procesos de distintas materias básicas en la solución de problemas de la vida cotidiana. | 5.1. Utiliza operaciones con números naturales y fracciones para la solución de problemas. | 5.1.1. Aplicación de una o dos operaciones aritméticas con números naturales o fracciones en la solución de problemas. | 1. Resuelve situaciones simuladas, al utilizar operaciones con números naturales o fracciones. | Problemas con números racionales | 2 |
40 |
Unidad 2[editar | editar código]
Competencias | Indicadores de logro | Contenidos orientados a actividades de aprendizaje | Criterios de evaluación | Dosificación (Secuencia de aprendizajes) | Cantidad de sesiones por aprendizaje |
7. Utiliza los conocimientos y las tecnologías propias de su cultura y las de otras culturas para resolver problemas de su entorno inmediato. | 7.1. Utiliza diferentes unidades de medida para establecer longitud (del sistema métrico e inglés). | 7.1.1. Establecimiento de las equivalencias de unidades de longitud más utilizadas en el contexto. | 1. Establece el valor de una medida en sistema internacional que fue dada en sistema inglés. | Medidas de longitud | 1 |
7.1.2. Representación a escala de planos utilizando diferentes unidades de longitud. | 2. Utiliza diferentes escalas para dibujar espacios de su contexto, utilizando diferentes unidades de longitud del sistema internacional. | Medidas de longitud | 1 | ||
7.3. Utiliza diferentes unidades de medida para establecer volumen, capacidad y temperatura. | 7.3.3. Ejercitación del cálculo de volumen de prismas rectangulares. | 3. Utiliza diferentes unidades de medida para definir el volumen de prismas rectangulares. | Volúmenes | 2 | |
1. Utiliza formas geométricas, símbolos, signos y señales para el desarrollo de sus actividades cotidianas. | 1.1. Establece relación entre lados y ángulos de triángulos y cuadriláteros. | 1.1.1. Identificación de ángulos opuestos por el vértice y de ángulos adyacentes. | 1. Reconoce ángulos con respecto a un vértice. | Ángulos en los triángulos | 1 |
1.1.2. Descripción de triángulo equilátero, isósceles y escaleno por sus ángulos. | 2. Diferencia triángulos según la medida de sus lados. | Clasificación de triángulos | 1 | ||
1.1.3. Establecimiento de la suma de ángulos en un triángulo. | 3. Demuestra que la suma de ángulos de un triángulo es 180°. | Ángulos en los triángulos | 1 | ||
1.1.4. Demostración del trazo de cuadriláteros: paralelogramos, trapecios. | 4. Establece las diagonales en paralelogramos y trapecios.
5. Explica el proceso para trazar paralelogramos y trapecios. |
Paralelogramos | 1 | ||
1.1.5. Establecimiento de relación entre diagonales de diferentes cuadriláteros. | 6. Identifica la relación entre diagonales en diferentes cuadriláteros. | Cuadriláteros | 1 | ||
1.1.7. Identificación y trazo de altura en diferentes cuadriláteros. | 7. Define la altura en diferentes cuadriláteros. | Cuadriláteros | 1 | ||
1.1.8. Establecimiento de la suma de ángulos en un cuadrilátero. | 8. Demuestra que la suma de ángulos de un cuadrilátero es 360°. | Ángulos en los cuadriláteros | 1 | ||
Unidad 3[editar | editar código]
Unidad 4[editar | editar código]
Conjunto de acciones (formas de actuar o de resolver tareas), con un orden, plan o pasos, para conseguir un determinado fin o meta. Se trata de saber hacer cosas, aplicar o actuar de manera ordenada para solucionar problemas, satisfacer propósitos o conseguir objetivos. Forman los contenidos procedimentales.
Término utilizado, a menudo, como un saber hacer. Se suele aceptar que, por orden creciente, en primer lugar estaría la habilidad, en segundo lugar la capacidad, y la competencia se situaría a un nivel superior e integrador. Capacidad es, en principio, la aptitud para hacer algo. Todo un conjunto de verbos en infinitivo expresan capacidades (analizar, comparar, clasificar, etc.), que se manifiestan a través de determinados contenidos (analizar algo, comparar cosas, clasificar objetos, etc.). Por eso son, en gran medida, transversales, susceptibles de ser empleadas con distintos contenidos. Una competencia moviliza diferentes capacidades y diferentes contenidos en una situación. La competencia es una capacidad compleja, distinta de un saber rutinario o de mera aplicación.