Cambios

Busca en cnbGuatemala con Google

sin resumen de edición
Línea 20: Línea 20:  
*Utilice los 12 pentóminos para forma una letra “L”, y encuentre el perímetro.
 
*Utilice los 12 pentóminos para forma una letra “L”, y encuentre el perímetro.
 
*Forme dos figuras más y calcule el perímetro, comparta sus hallazgos.
 
*Forme dos figuras más y calcule el perímetro, comparta sus hallazgos.
 +
 +
{|class="wikitable" style="width:50%; margin: 10px auto 10px auto; text-align:center;"
 +
|-
 +
|style="background:#fff; width:50%; border: 2px  solid #fff;"|[[Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(12.1).jpg|200px|center]]
 +
'''Figura 1'''
 +
|style="background:#fff; width:50%; border: 2px  solid #fff;"|[[Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(12.2).jpg|300px|center]]
 +
'''Figura 2'''
 +
|}
 +
 +
'''2. Lea, resuelva y exponga los resultados.'''
 +
 +
Cuando se cubre una superficie con un patrón de formas planas de manera que no se superponen ni hay espacios vacíos se dice que es una teselación.
 +
 +
En la figura 3 muestra una teselación 4*8*8, llamada así, porque cada vértice es la unión de un cuadrado (4 lados) y dos octágonos (8 lados).
 +
[[Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(12.2).jpg|200px|center]]
 +
<center>'''Figura 2'''</center>
 +
 +
Marcos es alcalde de su municipio. El salón comunal necesita cambio de piso. Marcos se ha decidió por dos modelos de piso (figura 4), pero le surge una duda: ¿Cómo se forman tan maravillosas figuras?
 +
*Escriba un mensaje a Marcos explicándole cómo se forman y el número para cada diseño.
 +
<center><gallery heights=200px widths=200px mode="nolines">
 +
Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(12.4).jpg
 +
Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(12.5).jpg
 +
</gallery></center>
 +
<center>'''Figura 4'''</center>
 +
 +
==Desarrollo==
 +
[[Archivo:Aprendo y Enseño Conjunto, Sistemas Númericos y Operaciones icono4.jpg|60px|right|link=]]
 +
===Nuevos aprendizajes===
 +
<div style="background-color:#fde8f1;  width:85%; padding:10px; margin: 10px auto 10px auto;">
 +
'''Un polígono''' es una figura plana formada por tres o más segmentos que se intersecan solo en los puntos extremos de manera que solo dos segmentos se tocan en cada punto extremo. Los polígonos reciben un nombre de acuerdo con el número de lados. En un '''polígono regular''', todos los lados y ángulos miden lo mismo, cuando un polígono no es regular se llama '''irregular.'''
 +
</div>
 +
 +
*Observe los polinomios de la figura 5. <br> Clasifíquelos como regular o irregular según el número de lados. Explique sus hallazgos.
 +
<center><gallery heights=100px widths=100px mode="nolines">
 +
Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(13.1).jpg
 +
Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(13.2).jpg
 +
Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(13.3).jpg
 +
Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(13.4).jpg
 +
</gallery></center>
 +
<center>'''Figura 5'''</center>
 +
 +
===Cuadrilátero===
 +
<div style="background-color:#fde8f1;  width:85%; padding:10px; margin: 10px auto 10px auto;">
 +
Un '''cuadrilátero''' es un polígono con cuatro lados. La suma de las medidas de los ángulos de un cuadrilátero es igual a 360°.
 +
</div>
 +
 +
*Calcule x y sustituya para hallar los ángulos del cuadrilátero en la figura 6: <br> 2x + (2x +5) + (3x + 5) + 3x = 260; 10x + 10 = 360; x =35°
 +
 +
*Calcule el valor numérico de los ángulos del cuadrilátero si están representados por: x; (x + 6); (2x-2); (x +1)
 +
 +
[[Archivo:Aprendo y enseño - Conjuntos, sistemas numéricos y operaciones 2 pag(13.5).jpg|200px|center]]
 +
<center>'''Figura 6'''</center>
 +
 +
===Área de polígono===
30 170

ediciones