Cambios

Busca en cnbGuatemala con Google

sin resumen de edición
Línea 1: Línea 1: −
El plan de estudios de matemáticas de la escuela intermedia (grados 5 a 8) contiene muchas nociones matemáticas importantes. Aún así, la proporcionalidad se puede considerar entre las más importantes. Los educadores de matemáticas sugieren que la capacidad de razonar proporcionalmente merece el tiempo y el esfuerzo que los educadores y estudiantes deben invertir para asegurar su desarrollo.
+
El currículo de matemáticas de la escuela intermedia (grados 5 a 8<ref>''Nota del editor:'' en Guatemala, Ciclo Básico del Nivel Diversificado.</ref> contiene muchas nociones matemáticas importantes. Aún así, la proporcionalidad se puede considerar entre las más importantes. Los educadores de matemáticas sugieren que la capacidad de razonar proporcionalmente merece el tiempo y el esfuerzo que los educadores y estudiantes deben invertir para asegurar su desarrollo.
    
La proporcionalidad es la piedra angular de los conceptos elementales de aritmética, números y medidas y, al mismo tiempo, uno de los conocimientos más elementales que se necesitan para las matemáticas más avanzadas.
 
La proporcionalidad es la piedra angular de los conceptos elementales de aritmética, números y medidas y, al mismo tiempo, uno de los conocimientos más elementales que se necesitan para las matemáticas más avanzadas.
Línea 30: Línea 30:     
Los investigadores generalmente distinguen dos tipos principales de problemas proporcionales: valor faltante y comparación de proporciones. Podemos considerar el problema de la mermelada de fresa (mencionado anteriormente) como un problema de valores perdidos, en el sentido de que se dan tres de los cuatro valores de la proporción y se debe calcular el cuarto. Uno puede convertirlo en un problema de comparación de proporciones cambiándolo a:<blockquote>Ayer, mi abuela hizo mermelada de fresa con 3,5 kg de azúcar para 5 kg de fresas. Hoy usó 6,5 kg de azúcar para 8 kg de fresas. ¿Qué mermelada sabía más dulce?</blockquote>En esta guía práctica basada en la investigación nos enfocamos en los problemas de valores faltantes, ya que estos han recibido la mayor atención en la investigación. Sin embargo, uno podría transferir fácilmente la mayoría de los hallazgos e implicaciones educativas a problemas de comparación de proporciones.  
 
Los investigadores generalmente distinguen dos tipos principales de problemas proporcionales: valor faltante y comparación de proporciones. Podemos considerar el problema de la mermelada de fresa (mencionado anteriormente) como un problema de valores perdidos, en el sentido de que se dan tres de los cuatro valores de la proporción y se debe calcular el cuarto. Uno puede convertirlo en un problema de comparación de proporciones cambiándolo a:<blockquote>Ayer, mi abuela hizo mermelada de fresa con 3,5 kg de azúcar para 5 kg de fresas. Hoy usó 6,5 kg de azúcar para 8 kg de fresas. ¿Qué mermelada sabía más dulce?</blockquote>En esta guía práctica basada en la investigación nos enfocamos en los problemas de valores faltantes, ya que estos han recibido la mayor atención en la investigación. Sin embargo, uno podría transferir fácilmente la mayoría de los hallazgos e implicaciones educativas a problemas de comparación de proporciones.  
 +
 +
== Notas ==
 +
<references />
 +
 
[[Categoría:Matemáticas]]
 
[[Categoría:Matemáticas]]
 
[[Categoría:Herramientas]]
 
[[Categoría:Herramientas]]