Cambios

Busca en cnbGuatemala con Google

sin resumen de edición
Línea 4: Línea 4:  
== <span style="color: #ff0088;">Presentación</span> ==
 
== <span style="color: #ff0088;">Presentación</span> ==
 
<div style="float:right">__TOC__</div>
 
<div style="float:right">__TOC__</div>
<span style="color: #ff0088;">La Dirección General de Evaluación e Investigación Educativa del Ministerio de Educación, encargada de velar y ejecutar los procesos de evaluación e investigación, para asegurar la calidad educativa, pone en sus manos esta publicación. Espera que sea de utilidad a los docentes del área curricular de Matemáticas del Nivel de Educación Media del Ciclo de Educación Básica, como un instrumento para reflexionar en torno a los resultados de las evaluaciones aplicadas en el año 2009.</span>
+
<span style="color: #ff0088;">La Dirección General de Evaluación e Investigación Educativa, del Ministerio de Educación, encargada de velar y ejecutar los procesos de evaluación e investigación, para asegurar la calidad educativa, pone en sus manos esta publicación, que espera sea de utilidad a los docentes del
 +
área curricular de Matemáticas, del Ciclo de Educación Básica del Nivel de Educación Media, como un instrumento para reflexionar en torno a los resultados de las evaluaciones aplicadas en el año 2013.</span>
    
{| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%"
 
{| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%"
Línea 11: Línea 12:  
|  
 
|  
 
<center>'''OBJETIVOS'''</center>
 
<center>'''OBJETIVOS'''</center>
* Analizar desde los procesos cognitivos los errores más comunes en la resolución de los ítems de las pruebas de Matemáticas, aplicadas a los estudiantes de tercer grado del Nivel de Educación Media del Ciclo de Educación Básica.
+
* Analizar desde los procesos cognitivos, los errores más comunes en la resolución de los ítems de las pruebas de Matemáticas, aplicadas a los estudiantes de tercer grado del Ciclo de Educación Básica del Nivel de Educación Media.
 
* Sugerir a los docentes actividades de enseñanza-aprendizaje que coadyuven al desarrollo de las competencias matemáticas en los estudiantes.
 
* Sugerir a los docentes actividades de enseñanza-aprendizaje que coadyuven al desarrollo de las competencias matemáticas en los estudiantes.
 
|}
 
|}
Línea 17: Línea 18:     
== <span style="color: #ff0088;">¿Cómo usar este documento?</span> ==
 
== <span style="color: #ff0088;">¿Cómo usar este documento?</span> ==
Para conseguir el objetivo de aprender del error, el presente documento se ha estructurado en tres apartados que se espera sean útiles para mejorar el proceso de aprendizaje de los estudiantes del Nivel de Educación Media del Ciclo de Educación Básica. En primer lugar se ofrece una cápsula informativa acerca de la teoría que sustenta el aprendizaje de los números racionales.
+
Para conseguir el objetivo de aprender del error, el presente documento se ha estructurado en tres apartados que se espera sean útiles para mejorar el proceso de aprendizaje de los estudiantes del Ciclo de Educación Básica del Nivel de Educación Media.
   −
A continuación, se presenta un ítem clonado de la prueba de matemáticas que resuelven los estudiantes de tercero Básico en las evaluaciones nacionales que aplica la DIGEDUCA, con la finalidad que el docente identifique este contenido dentro de lo que establece el Curriculum Nacional Base –CNB–, la competencia que se desarrolla por medio de dicho contenido y el porcentaje de ítems que fueron resueltos correctamente a nivel nacional.
+
En primer lugar se ofrece una cápsula informativa, acerca de la teoría que sustenta el aprendizaje de los números racionales. A continuación, se presenta un ítem clonado de la prueba de matemáticas que resuelven los estudiantes de tercero básico en las evaluaciones nacionales que aplica la DIGEDUCA, con la finalidad que el docente identifique este contenido evaluado dentro de lo que establece el Curriculum Nacional Base –CNB–, la competencia que se desarrolla por medio de dicho contenido y el porcentaje de ítems que fueron resueltos correctamente a nivel nacional.
   −
En el apartado ''Análisis del error'', se explican las posibles causas que llevaron a los estudiantes a seleccionar una opción incorrecta. Aquí radica la razón del título de esta publicación. Se espera que los docentes utilicen este análisis para identificar las posibles deficiencias y promover estrategias para fortalecer los aprendizajes. Como complemento del análisis del error, se brindan algunas sugerencias para mejorar los aprendizajes, que desde luego no quedan agotadas en este bifoliar.  
+
En el apartado '''Análisis del error''', se explican las posibles causas que llevaron a los estudiantes a seleccionar una opción incorrecta. Aquí radica la razón del título de esta publicación, se espera que los docentes utilicen este análisis para identificar las posibles deficiencias y promover estrategias para fortalecer los aprendizajes. Como complemento del análisis del error, se brindan algunas sugerencias para mejorar los aprendizajes, que desde luego no quedan agotadas en este bifoliar. Finalmente se refieren algunas referencias bibliográficas que pueden ser consultadas para completar la información aquí incluida.
   −
Finalmente se refieren algunas referencias bibliográficas que pueden ser consultadas para completar la información aquí incluida. La DIGEDUCA espera con esta publicación hacer un aporte que favorezca la calidad educativa de la enseñanza en nuestro país.
+
La DIGEDUCA espera con esta publicación, hacer un aporte que favorezca la calidad educativa de la enseñanza en nuestro país.
    
== <span style="color: #ff0088;">Números racionales</span> ==
 
== <span style="color: #ff0088;">Números racionales</span> ==
Línea 47: Línea 48:     
== <span style="color: #ff0088;">Análisis del ítem</span> ==
 
== <span style="color: #ff0088;">Análisis del ítem</span> ==
Al incluir ítems de números racionales se espera que el estudiante evidencie que utiliza correctamente el pensamiento matemático.
+
Al incluir ítems que contengan números racionales, se espera que el estudiante evidencie conocimiento de este conjunto de números y de las propiedades de los mismos en cálculos de operaciones.
    
[[Archivo:Fig3_NUMEROS_RACIONALES.png |center]]
 
[[Archivo:Fig3_NUMEROS_RACIONALES.png |center]]
    
[[Archivo:Fig4_NUMEROS_RACIONALES.png |center]]
 
[[Archivo:Fig4_NUMEROS_RACIONALES.png |center]]
 
+
{| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="50%"
La demanda cognitiva de este ítem, ubicada en Utilización, requiere del estudiante que demuestre que '''emplea operaciones con números racionales para encontrar la parte representada en una figura geométrica.'''
+
| <span style="color: #ffffff;"><center>Porcentaje de respuestas correctas en los ítems que evalúan números racionales. '''28,8%'''</center></span>
 +
|}
 +
La demanda cognitiva de este ítem, ubicada en Utilización, requiere del estudiante '''emplear operaciones con números racionales para encontrar la parte representada en una figura geométrica.'''
    
== <span style="color: #ff0088;">Análisis del error</span> ==
 
== <span style="color: #ff0088;">Análisis del error</span> ==
Línea 79: Línea 82:  
|  
 
|  
   −
En conclusión, los errores evidencian que los estudiantes no pueden representar fracciones empleando patrones geométricos y que no tienen conocimiento de las operaciones con fracciones.
+
En conclusión, los errores evidencian que los estudiantes no pueden representar fracciones empleando patrones geométricos y que no tienen conocimiento de
 +
las operaciones con fracciones.
 
|}
 
|}
   Línea 86: Línea 90:  
{| style="background:White;border:2px solid White;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="95%"
 
{| style="background:White;border:2px solid White;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="95%"
 
|  
 
|  
En el CNB la [[Malla curricular de Matemáticas - Tercer Grado#Escrito|competencia 1]] expresa que el estudiante “Produce patrones aritméticos, algebraicos y geométricos, aplicando propiedades y relaciones”. Para ello, se propone como indicador de logro la aplicación de “factorización de polinomios al simplificar fracciones algebraicas y dividir polinomios”. Los contenidos declarativos y procedimentales que permitirán desarrollar la competencia prevista son los Polinomios y sus operaciones y propiedades, Productos Notables, Binomio de Newton, Triángulo de Pascal o de Tartaglia y Factorización.<ref>Curriculum Nacional Base. Nivel de Educación Media, Ciclo Básico, Tercer Grado. (2010), p. 58.</ref>
+
En el CNB la [[Malla curricular de Matemáticas - Tercer Grado#Escrito|competencia 1]] expresa que el estudiante “Produce patrones aritméticos, algebraicos y geométricos, aplicando propiedades y relaciones”. Para ello, se propone como indicador de logro la aplicación de “factorización de polinomios al simplificar fracciones algebraicas y dividir polinomios”. Los contenidos declarativos y procedimentales que permitirán desarrollar la competencia prevista son los Polinomios y sus operaciones y propiedades, Productos Notables, Binomio de Newton, Triángulo de Pascal o de Tartaglia y Factorización.<ref>Currículo Nacional Base. Nivel de Educación Media, Ciclo Básico, Tercer Grado, 2010, p. 51.</ref>
 
|}
 
|}
 
|}
 
|}
882

ediciones