Serie Aprender del Error - Graduandos/Geometría

De CNB
Saltar a: navegación, buscar
Geometría



2 GEOMETRIA-1.png

Presentación[editar | editar código]

La evaluación es un elemento fundamental en el modelo de la calidad educativa; sin embargo, por sí misma, no mejora los aprendizajes. Es el uso que se haga de los resultados lo que impacta el alcance de las metasIndicadores de éxito de un plan escrito en forma específica. educativas del país. Con el objetivo de facilitar la vinculación de los resultados de la Evaluación Nacional de Graduandos con los procesos de enseñanza- aprendizaje que se dan en el aula, la Dirección General de Evaluación e Investigación Educativa –DIGEDUCA– del Ministerio de Educación, plantea este material como un instrumento para que docentes y directores puedan reflexionar acerca de los resultados obtenidos en el 2013. Se espera que esta reflexión incida en la tarea que cada docente realiza en cualquiera de las áreas curriculares del Nivel de Educación Media, del Ciclo de Educación Diversificada.

Evaluación de Graduandos[editar | editar código]

Anualmente todos los estudiantes que cursan el último año del ciclo diversificado participan en la Evaluación Nacional de Graduandos. El objetivo del proceso es determinar el nivel de los aprendizajes alcanzados por los alumnos al finalizar su paso por el sistema educativo. Para medir las habilidades desarrolladas, se evalúan contenidos declarativos y procedimentales en el contexto de competencias básicas para la vidaConjunto de aprendizajes (conocimientos, procedimientos y actitudes) imprescindibles y fundamentales para que todas las personas se realicen personalmente, se incorporen a la vida adulta de manera satisfactoria y participaen activamente como miembros de la sociedad.. El área curricular de Matemáticas se incluye en la Evaluación Nacional de Graduandos ya que promueve el desarrollo de los procesos cognitivos necesarios para la comprensión cuantitativa de la realidad. Dentro de esta área se consolidan destrezas relacionadas con análisis, razonamiento y comunicaciónSistema social para expresar ideas y manifestarlas al prójimo. Este sistema existe dentro de un entorno social (sistema social) y un sistema lingüístico (ejemplos son el español, francés, k’iche’, kaqchikel, etc.) Tienen que existir ambos sistemas para que pueda existir la comunicación. pertinente y eficaz de ideas, a partir del planteamiento, resolución e interpretación de problemas matemáticos (DIGECADE, 2010; DIGECUR, 2013a; DIGECUR, 2013b). Está vinculada directamente con la competencia básica 3: el uso del pensamiento lógico-matemático para la resolución de problemas de la vida cotidiana. Las pruebas de Matemáticas evalúan contenidos de sistemas numéricos, aritmética, geometría, trigonometría, álgebra, lógica matemática y estadística. En este documento se analizan, desde los procesos cognitivos, errores comunes que los estudiantes evaluados en el 2013 cometieron al resolver ítems de perímetro de figuras geométricas.

Competencias básicas para la vida

Conjunto de aprendizajes (conocimientos, procedimientosConjunto de acciones (formas de actuar o de resolver tareas), con un orden, plan o pasos, para conseguir un determinado fin o meta. Se trata de saber hacer cosas, aplicar o actuar de manera ordenada para solucionar problemas, satisfacer propósitos o conseguir objetivos. Forman los contenidos procedimentales. y actitudes) imprescindibles y fundamentales para que todas las personas se realicen personalmente, se incorporen a la vida adulta de manera satisfactoria y participen activamente como miembros de la sociedad.

Cfr. USAID, 2009, p. 5.

¿Cómo usar este documento?[editar | editar código]

Lea

Lea la teoría que sustenta y justifica el contenido evaluado.

Analice

Analice el ítem clonado y su descripción.

Identifique

A través del análisis del error, identifique posibles debilidades de los estudiantes.

Implemente

Decida estrategias a implementar para contribuir al desarrollo de la competencia matemática.

Resultados El porcentaje de respuestas correctas en geometría fue de 21%. Esto quiere decir que si la prueba incluía 5 ítems que evaluaban este contenido, los estudiantes resolvieron correctamente 1.*

2 GEOMETRIA-2-figura2a.png

*El número de ítems varía en las distintas formas de la prueba.

Gometría[editar | editar código]

Los conocimientos geométricos favorecen el desarrollo de habilidades de visualización, pensamiento crítico, intuición, perspectiva, razonamiento deductivo, razonamiento espacial y argumentación lógica (Jones, 2002). Y en específico, la enseñanza de figuras planas beneficia la capacidadTérmino utilizado, a menudo, como un saber hacer. Se suele aceptar que, por orden creciente, en primer lugar estaría la habilidad, en segundo lugar la capacidad, y la competencia se situaría a un nivel superior e integrador. Capacidad es, en principio, la aptitud para hacer algo. Todo un conjunto de verbos en infinitivo expresan capacidades (analizar, comparar, clasificar, etc.), que se manifiestan a través de determinados contenidos (analizar algo, comparar cosas, clasificar objetos, etc.). Por eso son, en gran medida, transversales, susceptibles de ser empleadas con distintos contenidos. Una competencia moviliza diferentes capacidades y diferentes contenidos en una situación. La competencia es una capacidad compleja, distinta de un saber rutinario o de mera aplicación. de los estudiantes para resolver problemas prácticos (Morales y dos Santos, 2012).

Entre otros contenidos de geometría, se evalúa el cálculo del perímetro de figuras planas. El perímetro de una figura plana es la suma de las longitudes de sus lados.

2 GEOMETRIA-2-figura1.png

Análisis del ítem[editar | editar código]

Resolver correctamente este ítem evidencia que el estudiante es capaz de identificar propiedades de figuras geométricas planas, entiende el concepto de perímetro, reconoce elementos relevantes en gráficos que le ayudan a entender el problema y puede analizar e incorporar aplicaciones de conocimiento geométrico.

La figura muestra un rectángulo que tiene una sección sombreada.

2 GEOMETRIA-2-figura2.png

¿Cuál es el perímetro de la sección sombreada?

a. 515cm

b. 91cm

c. 45.5cm

d. 115cm

Descripción del ítem

Competencia básica 3: Pensamiento lógico-matemático
Dimensión clave Representación cuantitativa y espacial de la realidad.
Componente Formas, patrones y relaciones: establecer propiedades y relaciones entre distintos elementos geométricos.
Indicador de logroEvidencia de que la competencia se ha alcanzado por el o la estudiante. Aplica teoremas y conocimientos de geometría plana para interpretar información.
Contenido evaluado Perímetro
Demanda cognitiva Utilización
Respuesta correcta Opción b

Análisis del error[editar | editar código]

El ítem requiere que el estudiante identifique el perímetro de un rectángulo. Utilizando las medidas indicadas, debe encontrar cuánto mide la base del

rectángulo sombreado y calcular a partir de ello el perímetro solicitado. 2 GEOMETRIA-3 figura1.png Los estudiantes no fueron capaces de identificar las medidas de base y altura para calcular el perímetro del rectángulo, no reconocieron la medida que debían restar a la base del rectángulo para calcular la base del área sombreada.

Si seleccionaron la opción a, los estudiantes identificaron la base de la sección sombreada pero calcularon el área del rectángulo (24.5cm * 21cm = 515cm2) en lugar del perímetro y al considerar la respuesta, no tomaron en cuenta las unidades de medida.

Los estudiantes que definieron el perímetro como la opción c, no reconocen el perímetro como la suma de la longitud de todos los lados de la figura y únicamente sumaron la base del área sombreada con su altura (24.5cm + 21cm = 45.5cm).

Quienes eligieron la opción d dominan el concepto del perímetro; sin embargo, no fueron capaces de interpretar el problema planteado en la figura y calcularon el perímetro del rectángulo exterior (2(36.5cm + 21cm) = 115cm) y no el perímetro del rectángulo interior.

2 GEOMETRIA-2-figura3.png

b = 36.5cm – 12cm = 24.5cm h = 21cm

P = b + h + b + h P = 2b + 2h P = 2 (b + h)

P = 2 (24.5cm + 21cm) P = 91cm

Sugerencias de estrategias de enseñanza-aprendizajeProceso por el cual las personas adquieren cambios en su comportamiento, mejoran sus actuaciones, reorganizan su pensamiento o descubren nuevas maneras de comportamiento y nuevos conceptos e información.[editar | editar código]

1. Transformar períodos de clase en tiempos de aulataller, espacios en los que los estudiantes a través de actividades definidas, puedan deducir contenidos de geometría. Para ello se necesita: a) diseñar una situación problemática que requiera visualizar, explorar, analizar, abstraer propiedades, clasificar, elaborar y validar conjeturas acerca de figuras y sus relaciones; b) elegir un material concreto que facilite el aprendizaje; c) facilitar las indicaciones sin ofrecer rutas de resolución inmediatas; d) dirigir la puesta en común de procedimientos y resultados; e) cerrar la actividad formalizando los contenidos geométricos trabajados.

El razonamiento geométrico puede alcanzarse a través de tareas de conceptualización, investigación y demostración. Estos tres tipos de tareas dentro del enfoque de resolución de problemas, permiten que los estudiantes construyan conocimiento geométrico al resolver situaciones problemáticas (INEE, 2008).

2. Utilizar elementos del contexto para que los alumnos den sentido al concepto de perímetro. Pueden buscar objetos que tengan silueta de polígonos, medir la longitud de sus lados, calcular el perímetro y dibujar una figura representativa. Por ejemplo pueden medir el campo de futbol (paralelogramo), el tablero del pupitre (cuadrilátero), una fuente con base hexagonal, el patio de la casa, una sección del jardín… Además del cálculo, debe estimularse la generación de ideas sobre las posibles utilidades de conocer el perímetro de los objetos elegidos, de manera que los estudiantes puedan darle significado al aprendizaje y transferir el conocimiento geométrico más allá del salón de clase.

3. Elaborar un Tangram que consiste en un rompecabezas de origen chino que consta de siete formas básicas obtenidas por la división de un cuadrado y resulta útil como material concreto para aprender distintos teoremas geométricos de figuras planas. Puede hacerse fácilmente utilizando una cartulina (revisar Arenas, 2012). Utilizando todas las piezas, sin colocar una pieza sobre otra, los estudiantes construyen distintas figuras y responden: ¿cuál es el perímetro de las figuras?, ¿cuál es la de mayor perímetro?, ¿cuál es la de menor? Se puede alternar entre medidas directas y cálculos a partir del conocimiento previo de la longitud de los lados de determinadas figuras. 2 GEOMETRIA-2-figura4.png

Referencias[editar | editar código]