Busca en cnbGuatemala con Google
2146 bytes añadidos
, hace 10 años
Línea 19: |
Línea 19: |
| == <span style="color: #ff0088;">Exponentes</span> == | | == <span style="color: #ff0088;">Exponentes</span> == |
| Si '''n''' es un entero positivo, la notación exponencial '''a<sup>n</sup>''' representa el producto del número real '''a''' multiplicado '''n''' veces por sí mismo y se define de la forma: '''a<sup>n</sup>''' = a∙a∙a∙a∙a…a. Las '''leyes de los exponentes''' son reglas que permiten simplificar expresiones. Si a y b son números reales cualesquiera, entonces: <center>[[Archivo:FIG_1_EXPONENTES.png |350px|Tabla 1.]]</center> | | Si '''n''' es un entero positivo, la notación exponencial '''a<sup>n</sup>''' representa el producto del número real '''a''' multiplicado '''n''' veces por sí mismo y se define de la forma: '''a<sup>n</sup>''' = a∙a∙a∙a∙a…a. Las '''leyes de los exponentes''' son reglas que permiten simplificar expresiones. Si a y b son números reales cualesquiera, entonces: <center>[[Archivo:FIG_1_EXPONENTES.png |350px|Tabla 1.]]</center> |
| + | '''Simplificar''' una expresión que posee potencias significa cambiarla a otra equivalente aplicando las leyes de los exponentes de tal forma que cada número real aparece solo una vez y todos los exponentes son positivos, por ejemplo para simplificar la expresión:( 3x<sup>3</sup>y<sup>6</sup>) ∙ (4xy<sup>2</sup>) se utiliza la ley de los exponentes a<sup>m</sup> ∙ a<sup>n</sup> = a<sup>m+n</sup> de la siguiente forma: |
| + | Los factores se acomodan:(3)(4)x<sup>3</sup>xy<sup>6</sup>y<sup>2</sup>, |
| + | se aplica la ley (1) para simplificar a: 12 x<sup>4</sup> y<sup>8</sup> |
| + | == <span style="color: #ff0088;">Análisis del ítem</span> == |
| + | Al incluir ítems de exponentes se espera que el estudiante evidencie que utiliza correctamente la simplificación de expresiones. |
| + | {| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="40%" |
| + | | |
| + | {| style="background:White;border:2px solid White;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="95%" |
| + | | |
| + | Al simplificar la expresión [[Archivo:FIG_4_EXPONENTES.png|50px]]el resultado que se obtiene es:<br /> |
| + | ::a. 4x9<br /> |
| + | ::<u>b. 12x6</u><br /> |
| + | ::c. 4 x6<br /> |
| + | ::d. 2 x5<br /> |
| + | |} |
| + | |} |
| + | <center>[[Archivo:FIG_2_EXPONENTES.png |350px|]]</center> |
| + | La demanda cognitiva de este ítem, ubicada en Utilización, requiere del estudiante '''recordar las leyes de los exponentes, elegir la que corresponde y aplicarla correctamente para luego simplificar la expresión.''' |
| + | == <span style="color: #ff0088;">Análisis del error</span> == |
| + | {| style="background:#ff0088;border:1px solid #ff0088;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="55%" |
| + | | |
| + | {| style="background:White;border:2px solid White;border-radius: 2px;padding:6px; font-size:100%; line-height:1.2; margin:1em auto 1em auto" width="95%" |
| + | | |
| + | Previo a la enseñanza de las leyes de los exponentes refuerce los conocimientos básicos de los estudiantes en: |
| + | # Las propiedades de los números reales |
| + | # Las operaciones básicas de los números reales |
| + | # Potenciación |
| + | |} |
| + | |} |