Ir a la navegación
Ir a la búsqueda
Busca en cnbGuatemala con Google
15 bytes añadidos
, hace 8 años
Línea 1: |
Línea 1: |
| {{Título}} | | {{Título}} |
| {{Like}} | | {{Like}} |
− | Estudiantes de todo el mundo tienen dificultades en el aprendizaje de fracciones. En muchos países el estudiante promedio jamás obtiene un conocimiento conceptual de fracciones. Por ejemplo, en una prueba a nivel nacional solamente 50% de estudiantes americanos del 8vo grado ordenaron correctamente tres fracciones de menor a mayor (Concejo Nacional de Profesores de Matemática, 2007). Aún en países donde la mayoría de los estudiantes obtienen una comprensión conceptual razonablemente buena, como Japón o China, las fracciones son consideradas un tema difícil. | + | Estudiantes de todo el mundo tienen dificultades en el aprendizaje de fracciones. En muchos países el estudiante promedio jamás obtiene un conocimiento conceptual de las fracciones. Por ejemplo, en una prueba a nivel nacional solamente 50% de estudiantes del 8vo grado en los Estados Unidos ordenaron correctamente tres fracciones de menor a mayor (Consejo Nacional de Profesores de Matemática, 2007). Aún en países donde la mayoría de los estudiantes obtienen una comprensión conceptual razonablemente buena, como Japón o China, las fracciones son consideradas un tema difícil. |
| | | |
| Una razón de su dificultad es que, en su primera lección, las fracciones enfrentan a los estudiantes ante una premisa que señala que muchas propiedades son ciertas para números enteros pero no son verdaderas para todos los números. Por ejemplo, con fracciones, las multiplicaciones no siempre conducen a una respuesta mayor que los multiplicandos; la división no siempre lleva a una respuesta menor al dividendo; y los números no tienen sucesores únicos. Superar la creencia de que las propiedades son verdaderas para números enteros pero que no lo son para todos los números, es un gran reto. Aún en la secundaria muchos estudiantes no comprenden que hay números infinitos entre dos fracciones (Vamvakoussi & Vosniadou, 2010). Sin embargo, comprender fracciones es esencial para el aprendizaje de álgebra, geometría y otros ámbitos de la matemática superiores. | | Una razón de su dificultad es que, en su primera lección, las fracciones enfrentan a los estudiantes ante una premisa que señala que muchas propiedades son ciertas para números enteros pero no son verdaderas para todos los números. Por ejemplo, con fracciones, las multiplicaciones no siempre conducen a una respuesta mayor que los multiplicandos; la división no siempre lleva a una respuesta menor al dividendo; y los números no tienen sucesores únicos. Superar la creencia de que las propiedades son verdaderas para números enteros pero que no lo son para todos los números, es un gran reto. Aún en la secundaria muchos estudiantes no comprenden que hay números infinitos entre dos fracciones (Vamvakoussi & Vosniadou, 2010). Sin embargo, comprender fracciones es esencial para el aprendizaje de álgebra, geometría y otros ámbitos de la matemática superiores. |